Publications 2011 - 2014

2014

Scheme of the heterostructure assembly (left) and the chemically functionalized graphene FET (right).
Scheme of the heterostructure assembly (left) and the chemically functionalized graphene FET (right).
Image: Wiley-VCH: Advanced Materials

M. Woszczyna, A. Winter, M. Grothe, S. Wundrack, R. Stosch, T. Weimann, F. Ahlers, A. Turchanin
All-carbon vertical van der Waals heterostructures: Non-destructive functionalization of graphene for electronic applications
ADVANCED MATERIALS 2014, 26, 4831-4837
DOI: 10.1002/adma.201400948External link

Schematic representation of the doped Graphene before and after structuring
Schematic representation of the doped Graphene before and after structuring
Image: Wiley-VCH: Advanced Materials

Zh.-Sh. Wu, K. Parvez, A. Winter, H. Vieker, S. Han, A. Turchanin, X. Feng, K. Müllen
Layer-by-layer Assembled Heteroatom-Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Micro-Supercapacitors
ADVANCED MATERIALS 2014, 26, 4552-4558
DOI: 10.1002/adma.201401228External link

HRTEM images showing the effect of dry-cleaning of graphene with activated carbon.
HRTEM images showing the effect of dry-cleaning of graphene with activated carbon.
Image: AIP Publishing: Applied Physics Letters

G. Algara-Siller, O. Lehtinen, A. Turchanin, U. Kaiser
Dry-cleaning of graphene
APPLIED PHYSICS LETTERS 2014, 104, 153115
DOI: 10.1063/1.4871997External link

2013

Schematic representation of different precursor molecules used for CNM synthesis and the procedure from single molecules to a Nanomembrane
Schematic representation of different precursor molecules used for CNM synthesis and the procedure from single molecules to a Nanomembrane
Image: ACS Publications: ACS Nano

P. Angelova, H. Vieker, N.-E. Weber, D. Matei, O. Reimer, I. Meier, S. Kurasch, J. Biskupek, D. Lorbach, K. Wunderlich, L. Chen, A. Terfort, M. Klapper, K. Mullen, U. Kaiser, A. Gölzhäuser, and A. Turchanin
A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes
ACS NANO 2013, 7 6489-6497
DOI: 10.1021/nn402652fExternal link

There is a "Perspective" in ACS Nano about our article written by R.E. Palmer, A.P.G. Robinson, and Q. Guo:
How Nanoscience Translates into Technology: The Case of Self-Assembled Monolayers, Electron-Beam Writing, and Carbon NanomembranesExternal link

 

Zwitterions forming Dimers and Nanostructures as a consequence of pH-changes
Zwitterions forming Dimers and Nanostructures as a consequence of pH-changes
Image: ACS Publications: Journal of the American Chemical Society

M.T. Fenske, W. Meyer-Zaika, H.-G. Korth, H. Vieker, A. Turchanin, C Schmuck
Cooperative Self-Assembly of Discoid Dimers: Hierarchical Formation of Nanostructures with a pH Switch
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 2013, 135, 8342-8349
DOI: 10.1021/ja4025148External link

Frontispiece of Advanced Materials Volume 25, Issue 30
Frontispiece of Advanced Materials Volume 25, Issue 30
Picture: Wiley-VCH: Advanced Materials

 

 

 

D. G. Matei, N.-E. Weber, S. Kurasch, S. Wundrack, M. Woszczyna, M. Grothe, T. Weimann, F. Ahlers, R. Stosch, U. Kaiser, A. Turchanin
Functional single-layer graphene sheets from aromatic monolayers
ADVANCED MATERIALS 2013, 25 4146-4151
DOI: 10.1002/adma.201300651External link

Schematic representation of two corannulene derivatives synthesised.
Schematic representation of two corannulene derivatives synthesised.
Image: ACS Publications: Langmuir

Polina Angelova, Ephrath Solel, Galit Parvari, Andrey Turchanin, Mark Botoshansky, Armin Gölzhäuser, and Ehud Kienan
Chemisorbed Monolayers of Corannulene Penta-Thioethers on Gold
LANGMUIR 2013, 29, 2217-2223
DOI: 10.1021/la304600sExternal link

2012

Thermal conversion of Carbon Nitride-Graphene to n-doped Graphene,as well as the electrochemicalactivity given as the kinetic-limiting current density for different nanocrystaline graphene electrodes
Thermal conversion of Carbon Nitride-Graphene to n-doped Graphene,as well as the electrochemicalactivity given as the kinetic-limiting current density for different nanocrystaline graphene electrodes
Image: ACS Publications: ACS Nano

K. Parvez, S. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. Feng, K. Mllen
Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen Reduction Reaction
ACS NANO 2012, 6, 9541-9550
DOI: 10.1021/nn302674kExternal link

Spherical Model of biphenylthiol SAM on Au(111)
Spherical Model of biphenylthiol SAM on Au(111)
Image: ACS Publications: Langmuir

D. G. Matei, H. Muzik, A. Gölzhäuser, and A. Turchanin
Structural Investigation of 1,1'-Biphenyl-4-thiol Self-Assembled Monolayers on Au(111) by Scanning Tunneling Microscopy and Low-Energy Electron Diffraction
LANGMUIR 2012, 28, 13905-13911
DOI: 10.1021/la302821wExternal link

A simplified prototype device of high‐performance all‐solid‐state supercapacitors (ASSSs) based on 3D nitrogen and boron co‐doped monolithic graphene aerogels.
A simplified prototype device of high‐performance all‐solid‐state supercapacitors (ASSSs) based on 3D nitrogen and boron co‐doped monolithic graphene aerogels.
Image: Wiley-VCH: Advanced Materials

Zh.-Sh. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, K. Mllen
Three-dimensional nitrogen and boron co-doped graphenes for high-performance all solid-state supercapacitors
ADVANCED MATERIALS 2012, 24, 5130-5135
DOI: 10.1002/adma.201201948External link

structure of organic nanomembranes (left) and, after thermal conversion, nanocrystaline graphene, including their respective diffraction patterns
structure of organic nanomembranes (left) and, after thermal conversion, nanocrystaline graphene, including their respective diffraction patterns
Image: ACS Publications: The Journal of Physical Chemistry C

D.C. Rhinow, N.-E. Weber, A. Turchanin
Atmospheric Pressure, Temperature-Induced Conversion of Organic Monolayers into Nanocrystalline Graphene
THE JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116, 12295-12303
DOI: 10.1021/jp301877pExternal link

Helium Ion Microscopy (HIM) image of a 1 nm thick CNM covering a hexagonal pore (∼40 μm in diameter).
Helium Ion Microscopy (HIM) image of a 1 nm thick CNM covering a hexagonal pore (∼40 μm in diameter).
Image: Elsevier: Progress in Surface Science

A. Turchanin, A. Gölzhäuser
Carbon nanomembranes from self-assembled monolayers: Functional surfaces without bulk
PROGRESS IN SURFACE SCIENCE, 2012, 87, 108-162
DOI: 10.1016/j.progsurf.2012.05.001External link

Phase contrast TEM with a BPP. The BPP is an electrostatic einzel lens that shifts the phase of the unscattered beam by 90° to maximise in-focus phase contrast of weak-phase objects.
Phase contrast TEM with a BPP. The BPP is an electrostatic einzel lens that shifts the phase of the unscattered beam by 90° to maximise in-focus phase contrast of weak-phase objects.
Image: Elsevier: Ultramicroscopy

A. Walter, H. Muzik, H. Vieker, A. Turchanin, A. Beyer, A. Gölzhäuser, M. Lacher, S. Steltenkamp, S. Schmitz, P. Holik, W. Kühlbrandt, D. Rhinow
Practical aspects of Boersch phase contrast electron microscopy of biological specimens
ULTRAMICROSCOPY, 2012, 116, 62-72
DOI: 10.1016/j.ultramic.2012.03.009External link

2011

Ice-embedded TMV on nanocrystalline graphene.
Ice-embedded TMV on nanocrystalline graphene.
Image: American Institute of Physics: Applied Physics Letters

D. Rhinow, N.-E. Weber, A. Turchanin, A. Gölzhäuser, W. Kühlbrandt
Single-walled carbon nanotubes and nanocrystalline graphene reduce beam-induced movements in high-resolution electron cryo-microscopy of ice-embedded biological samples
APPLIED PHYSICS LETTERS , 2011, 99, 133701
DOI: 10.1063/1.3645010External link

left: high-resolution transmission electron image of nanocrystaline graphene, right:  Experimental σ(T) data for the experimental samples annealed at different temperatures after normalization to σ(273K)
left: high-resolution transmission electron image of nanocrystaline graphene, right: Experimental σ(T) data for the experimental samples annealed at different temperatures after normalization to σ(273K)
Image: ACS Publications: ACS Nano

A.Turchanin, D. Weber, M. Benfeld, C. Kisielowski, M. V. Fistul, K. B. Efetov, T. Weimann, R. Stosch, J. Mayer, A. Gölzhäuser
Conversion of Self-Assembled Monolayers into Nanocrystalline Graphene: Structure and Electric Transport
ACS NANO , 2011, 5, 3896-3904
DOI: 10.1021/nn200297nExternal link

Image intensity measured along line sections perpendicular to TMV on CNM (dashed arrow) and CC (solid arrow) supports.
Image intensity measured along line sections perpendicular to TMV on CNM (dashed arrow) and CC (solid arrow) supports.
Image: Elsevier: Ultramicroscopy

D. Rhinow, M. Büenfeld, N.-E. Weber, A. Beyer, A. Gölzhäuser, W. Kühlbrandt, N. Hampp, A. Turchanin
Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes
ULTRAMICROSCOPY , 2011, 111, 342-349
DOI: 10.1016/j.ultramic.2011.01.028External link

Cover Image of Small volume 7, Issue 7
Cover Image of Small volume 7, Issue 7
Image: Wiley-VCH: Small

 

 

 

C. T. Nottbohm, A. Turchanin, A. Beyer, R. Stosch, A. Gölzhäuser
Mechanically stacked 1 nm thick carbon nanosheets: Ultrathin layered materials with tunable optical, chemical and electrical properties
SMALL, 2011, 7, 874-883
DOI: 10.1002/smll.201001993External link